Adaptive and multilevel approach for constraint solving

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)


For many real world problems, modeled as Constraint Satisfaction Problems, there are no known efficient algorithms to solve them. The specialized literature offers a variety of solvers, which have shown satisfactory performance. Nevertheless, despite the efforts of the scientific community in developing new strategies, there is no algorithm that is the best for all possible situations. Then, several approaches have emerged to deal with the Algorithm Selection Problem. Here, we sketch the use a Choice Function for guiding a Constraint Programming solver exploiting search process features to dynamically adapt it in order to more efficiently solve Constraint Satisfaction Problems. To determine the best set of parameters of the choice function, an upper-level metaheuristic is used. The main novelty of our approach is that we reconfigure the search based solely on performance data gathered while solving the current problem.

Idioma originalInglés
Título de la publicación alojadaHCI International 2013 - Posters' Extended Abstracts - International Conference, HCI International 2013, Proceedings
EditorialSpringer Verlag
Número de páginas5
EdiciónPART I
ISBN (versión impresa)9783642394720
EstadoPublicada - 2013
Publicado de forma externa
Evento15th International Conference on Human-Computer Interaction, HCI International 2013 - Las Vegas, NV, Estados Unidos
Duración: 21 jul. 201326 jul. 2013

Serie de la publicación

NombreCommunications in Computer and Information Science
NúmeroPART I
ISSN (versión impresa)1865-0929


Conferencia15th International Conference on Human-Computer Interaction, HCI International 2013
País/TerritorioEstados Unidos
CiudadLas Vegas, NV


Profundice en los temas de investigación de 'Adaptive and multilevel approach for constraint solving'. En conjunto forman una huella única.

Citar esto