An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms

Victor M. Calo, Alexandre Ern, Ignacio Muga, Sergio Rojas

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

24 Citas (Scopus)

Resumen

We design and analyze a new adaptive stabilized finite element method. We construct a discrete approximation of the solution in a continuous trial space by minimizing the residual measured in a dual norm of a discontinuous test space that has inf–sup stability. We formulate this residual minimization as a stable saddle-point problem, which delivers a stabilized discrete solution and a residual representation that drives the adaptive mesh refinement. Numerical results on an advection–reaction model problem show competitive error reduction rates when compared to discontinuous Galerkin methods on uniformly refined meshes and smooth solutions. Moreover, the technique leads to optimal decay rates for adaptive mesh refinement and solutions having sharp layers.

Idioma originalInglés
Número de artículo112891
PublicaciónComputer Methods in Applied Mechanics and Engineering
Volumen363
DOI
EstadoPublicada - 1 may. 2020

Huella

Profundice en los temas de investigación de 'An adaptive stabilized conforming finite element method via residual minimization on dual discontinuous Galerkin norms'. En conjunto forman una huella única.

Citar esto