Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis

Andres Alejandro Ramos Magna, HÉCTOR GABRIEL ALLENDE CID, Carla Taramasco, Carlos Becerra, Rosa L. Figueroa

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

10 Citas (Scopus)

Resumen

Currently, one of the main challenges for information systems in healthcare is focused on support for health professionals regarding disease classifications. This work presents an innovative method for a recommendation system for the diagnosis of breast cancer using patient medical histories. In this proposal, techniques of natural language processing (NLP) were implemented on real datasets: one comprised 160, 560 medical histories of anonymous patients from a hospital in Chile for the following categories: breast cancer, cysts and nodules, other cancer, breast cancer surgeries and other diagnoses; and the other dataset was obtained from the MIMIC III dataset. With the application of word-embedding techniques, such as word2vec's skip-gram and BERT, and machine learning techniques, a recommendation system as a tool to support the physician's decision-making was implemented. The obtained results demonstrate that using word embeddings can define a good-quality recommendation system. The results of 20 experiments with 5-fold cross-validation for anamnesis written in Spanish yielded an F1 of 0.980 ± 0.0014 on the classification of 'cancer' versus 'not cancer' and 0.986 ± 0.0014 for 'breast cancer' versus 'other cancer'. Similar results were obtained with the MIMIC III dataset.

Idioma originalInglés
Número de artículo9108225
Páginas (desde-hasta)106198-106213
Número de páginas16
PublicaciónIEEE Access
Volumen8
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis'. En conjunto forman una huella única.

Citar esto