Resumen
We prove that the exact non local equation derived by the present authors for the temporal linear evolution of the surface of a viscous incompressible fluid reduces asymptotically for high viscosity to a second order Mathieu type equation proposed recently by Cerda and Tirapegui. The equation describes a strongly damped pendulum and the conditions of validity of the asymptotic regime are given in terms of the relevant physical parameters.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 553-565 |
Número de páginas | 13 |
Publicación | Journal of Statistical Physics |
Volumen | 101 |
N.º | 1-2 |
DOI | |
Estado | Publicada - oct. 2000 |
Publicado de forma externa | Sí |