Bifurcations of emerging patterns in the presence of additive noise

Gonzague Agez, Marcel G. Clerc, Eric Louvergneaux, René G. Rojas

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

20 Citas (Scopus)

Resumen

A universal description of the effects of additive noise on super- and subcritical spatial bifurcations in one-dimensional systems is theoretically, numerically, and experimentally studied. The probability density of the critical spatial mode amplitude is derived. From this generalized Rayleigh distribution we predict the shape of noisy bifurcations by means of the most probable value of the critical mode amplitude. Comparisons with numerical simulations are in quite good agreement for cubic or quintic amplitude equations accounting for stochastic supercritical bifurcation and for cubic-quintic amplitude equation accounting for stochastic subcritical bifurcation. Experimental results obtained in a one-dimensional Kerr-like slice subjected to optical feedback confirm the analytical expression prediction for the supercritical bifurcation shape.

Idioma originalInglés
Número de artículo042919
PublicaciónPhysical Review E
Volumen87
N.º4
DOI
EstadoPublicada - 23 abr. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Bifurcations of emerging patterns in the presence of additive noise'. En conjunto forman una huella única.

Citar esto