Boosting the deep learning wavefront sensor for real-time applications [Invited]

ESTEBAN MAURICIO VERA ROJAS, Felipe Guzmán, Camilo Weinberger

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)


The deep learning wavefront sensor (DLWFS) allows the direct estimate of Zernike coefficients of aberrated wavefronts from intensity images. The main drawback of this approach is related to the use of massive convolutional neural networks (CNNs) that are lengthy to train or estimate. In this paper, we explore several options to reduce both the training and estimation time. First, we develop a CNN that can be rapidly trained without compromising accuracy. Second, we explore the effects given smaller input image sizes and different amounts of Zernike modes to be estimated. Our simulation results demonstrate that the proposed network using images of either 8×8, 16×16, or 32×32 will dramatically reduce training time and even boost the estimation accuracy of Zernike coefficients. From our experimental results, we can confirm that a 16×16 DLWFS can be quickly trained and is able to estimate the first 12 Zernike coefficients-skipping piston, tip, and tilt-without sacrificing accuracy and significantly speeding up the prediction time to facilitate low-cost, real-time adaptive optics systems.

Idioma originalInglés
Páginas (desde-hasta)B119-B124
PublicaciónApplied Optics
EstadoPublicada - 1 abr. 2021
Publicado de forma externa


Profundice en los temas de investigación de 'Boosting the deep learning wavefront sensor for real-time applications [Invited]'. En conjunto forman una huella única.

Citar esto