Deep learning wavefront sensing

Yohei Nishizaki, Matias Valdivia, Ryoichi Horisaki, Katsuhisa Kitaguchi, Mamoru Saito, Jun Tanida, Esteban Vera

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

161 Citas (Scopus)

Resumen

We present a new class of wavefront sensors by extending their design space based on machine learning. This approach simplifies both the optical hardware and image processing in wavefront sensing. We experimentally demonstrated a variety of image-based wavefront sensing architectures that can directly estimate Zernike coefficients of aberrated wavefronts from a single intensity image by using a convolutional neural network. We also demonstrated that the proposed deep learning wavefront sensor can be trained to estimate wavefront aberrations stimulated by a point source and even extended sources.

Idioma originalInglés
Páginas (desde-hasta)240-251
Número de páginas12
PublicaciónOptics Express
Volumen27
N.º1
DOI
EstadoPublicada - 7 ene. 2019

Huella

Profundice en los temas de investigación de 'Deep learning wavefront sensing'. En conjunto forman una huella única.

Citar esto