Degenerate dynamical systems

Joel Saavedra, Ricardo Troncoso, Jorge Zanelli

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

34 Citas (Scopus)


Dynamical systems, whose symplectic structure degenerates, becoming noninvertible at some points along the orbits, are analyzed. It is shown that for systems with a finite number of degrees of freedom, like in classical mechanics, the degeneracy occurs on domain walls that divide phase space into nonoverlapping regions, each one describing a nondegenerate system, causally disconnected from each other. These surfaces are characterized by the sign of the Liouville flux density on them, behaving as sources or sinks of orbits. In this latter case, once the system reaches the domain wall, it acquires a new gauge invariance and one degree of freedom is dynamically frozen, while the remaining degrees of freedom evolve regularly thereafter.

Idioma originalInglés
Páginas (desde-hasta)4383-4390
Número de páginas8
PublicaciónJournal of Mathematical Physics
EstadoPublicada - sept. 2001
Publicado de forma externa


Profundice en los temas de investigación de 'Degenerate dynamical systems'. En conjunto forman una huella única.

Citar esto