Discretization of linear problems in banach spaces: Residual minimization, nonlinear petrov-galerkin, and monotone mixed methods

IGNACIO PATRICIO PEDRO MUGA URQUIZA, Kristoffer G. Van Der Zee

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

This work presents a comprehensive discretization theory for abstract linear operator equations in Banach spaces. The fundamental starting point of the theory is the idea of residual minimization in dual norms and its inexact version using discrete dual norms. It is shown that this development, in the case of strictly convex reflexive Banach spaces with strictly convex dual, gives rise to a class of nonlinear Petrov-Galerkin methods and, equivalently, abstract mixed methods with monotone nonlinearity. Under the Fortin condition, we prove discrete stability and quasioptimal convergence of the abstract inexact method, with constants depending on the geometry of the underlying Banach spaces. The theory generalizes and extends the classical Petrov-Galerkin method as well as existing residual-minimization approaches, such as the discontinuous Petrov- Galerkin method.

Idioma originalInglés
Páginas (desde-hasta)3406-3426
Número de páginas21
PublicaciónSIAM Journal on Numerical Analysis
Volumen58
N.º6
DOI
EstadoPublicada - 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Discretization of linear problems in banach spaces: Residual minimization, nonlinear petrov-galerkin, and monotone mixed methods'. En conjunto forman una huella única.

Citar esto