TY - JOUR
T1 - Dispersion of growth of matter perturbations in f(R) gravity
AU - Tsujikawa, Shinji
AU - Gannouji, Radouane
AU - Moraes, Bruno
AU - Polarski, David
PY - 2009/10/29
Y1 - 2009/10/29
N2 - We study the growth of matter density perturbations δm for a number of viable f(R) gravity models that satisfy both cosmological and local gravity constraints, where the Lagrangian density f is a function of the Ricci scalar R. If the parameter m ≡ Rf,RR/f,R today is larger than the order of 10-6, linear perturbations relevant to the matter power spectrum evolve with a growth rate s ≡ d ln □ δm/d ln □ a (a is the scale factor) that is larger than in the ΛCDM model. We find the window in the free parameter space of our models for which spatial dispersion of the growth index γ0 ≡ γ(z=0) (z is the redshift) appears in the range of values 0.40 □ γ0 0.55, as well as the region in parameter space for which there is essentially no dispersion and γ0 converges to values around 0.40 □ γ □ 0.43. These latter values are much lower than in the ΛCDM model. We show that these unusual dispersed or converged spectra are present in most of the viable f(R) models with m(z=0) larger than the order of 10-6. These properties will be essential in the quest for f(R) modified gravity models using future high-precision observations and they confirm the possibility to distinguish clearly most of these models from the ΛCDM model.
AB - We study the growth of matter density perturbations δm for a number of viable f(R) gravity models that satisfy both cosmological and local gravity constraints, where the Lagrangian density f is a function of the Ricci scalar R. If the parameter m ≡ Rf,RR/f,R today is larger than the order of 10-6, linear perturbations relevant to the matter power spectrum evolve with a growth rate s ≡ d ln □ δm/d ln □ a (a is the scale factor) that is larger than in the ΛCDM model. We find the window in the free parameter space of our models for which spatial dispersion of the growth index γ0 ≡ γ(z=0) (z is the redshift) appears in the range of values 0.40 □ γ0 0.55, as well as the region in parameter space for which there is essentially no dispersion and γ0 converges to values around 0.40 □ γ □ 0.43. These latter values are much lower than in the ΛCDM model. We show that these unusual dispersed or converged spectra are present in most of the viable f(R) models with m(z=0) larger than the order of 10-6. These properties will be essential in the quest for f(R) modified gravity models using future high-precision observations and they confirm the possibility to distinguish clearly most of these models from the ΛCDM model.
UR - http://www.scopus.com/inward/record.url?scp=70449730233&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.80.084044
DO - 10.1103/PhysRevD.80.084044
M3 - Article
AN - SCOPUS:70449730233
SN - 1550-7998
VL - 80
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 8
M1 - 084044
ER -