Distributed Clustering of Text Collections

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)


Current data processing tasks require efficient approaches capable of dealing with large databases. A promising strategy consists in distributing the data along with several computers that partially solve the undertaken problem. Finally, these partial answers are integrated to obtain a final solution. We introduce distributed shared nearest neighbors (D-SNN), a novel clustering algorithm that work with disjoint partitions of data. Our algorithm produces a global clustering solution that achieves a competitive performance regarding centralized approaches. The algorithm works effectively with high dimensional data, being advisable for document clustering tasks. Experimental results over five data sets show that our proposal is competitive in terms of quality performance measures when compared to state of the art methods.

Idioma originalInglés
Número de artículo8882328
Páginas (desde-hasta)155671-155685
Número de páginas15
PublicaciónIEEE Access
EstadoPublicada - 2019


Profundice en los temas de investigación de 'Distributed Clustering of Text Collections'. En conjunto forman una huella única.

Citar esto