TY - JOUR
T1 - Evaluation of connected clonal growth of Solidago chilensis as an avoidance mechanism in copper-polluted soils
AU - Lillo, Felipe
AU - Ginocchio, Rosanna
AU - Ulriksen, Christopher
AU - Dovletyarova, Elvira A.
AU - Neaman, Alexander
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2019/9
Y1 - 2019/9
N2 - Plant resistance to metals can be achieved by two strategies, tolerance and avoidance. Although metal tolerance has been broadly studied in terrestrial plants, avoidance has been less considered as a strategy to cope with soil metal pollution. Avoidance may be an effective alternative in herbaceous plants with connected clonal growth in environments having high heterogeneity in soil micro-spatial distribution of available metals and other soil conditions (i.e. organic matter). In this study, we performed a laboratory experiment on clonal growth of Solidago chilensis when exposed to copper-spiked soils (800 mg kg−1) at different depths (0, 2, 5 and 8 cm depth), with (20%) and without addition of organic matter to mimic contrasting microhabitats found at smelter hinterlands (i.e. open bare ground and microhabitats below shrubs). Results showed that plants grown in the 2 cm-depth Cu-spiked soils were able to growth and produce ramets and rhizomes. However, increased Cu uptake of plants determined phytotoxic effects and a reduction in clonal spread in the 5 cm- and 8 cm-depth Cu-spiked soils. Addition of organic matter to the Cu-spiked soil layers allowed clonal spread. Considering that ramet and rhizome production is decreased but not inhibited when copper pollution is restricted to the uppermost soil layer (2 cm depth) and that organic matter eliminated soil copper toxicity allowing normal clonal spread, connected clonal growth may be an effective avoidance mechanism of Solidago chilensis, particularly in environments with high heterogeneity in micro-spatial distribution of metals and organic matter in the soil profile and between microhabitats.
AB - Plant resistance to metals can be achieved by two strategies, tolerance and avoidance. Although metal tolerance has been broadly studied in terrestrial plants, avoidance has been less considered as a strategy to cope with soil metal pollution. Avoidance may be an effective alternative in herbaceous plants with connected clonal growth in environments having high heterogeneity in soil micro-spatial distribution of available metals and other soil conditions (i.e. organic matter). In this study, we performed a laboratory experiment on clonal growth of Solidago chilensis when exposed to copper-spiked soils (800 mg kg−1) at different depths (0, 2, 5 and 8 cm depth), with (20%) and without addition of organic matter to mimic contrasting microhabitats found at smelter hinterlands (i.e. open bare ground and microhabitats below shrubs). Results showed that plants grown in the 2 cm-depth Cu-spiked soils were able to growth and produce ramets and rhizomes. However, increased Cu uptake of plants determined phytotoxic effects and a reduction in clonal spread in the 5 cm- and 8 cm-depth Cu-spiked soils. Addition of organic matter to the Cu-spiked soil layers allowed clonal spread. Considering that ramet and rhizome production is decreased but not inhibited when copper pollution is restricted to the uppermost soil layer (2 cm depth) and that organic matter eliminated soil copper toxicity allowing normal clonal spread, connected clonal growth may be an effective avoidance mechanism of Solidago chilensis, particularly in environments with high heterogeneity in micro-spatial distribution of metals and organic matter in the soil profile and between microhabitats.
KW - Copper smelter
KW - Copper toxicity
KW - Metal pollution
KW - Soil heterogeneity
KW - Vegetative growth
UR - http://www.scopus.com/inward/record.url?scp=85066075701&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2019.04.199
DO - 10.1016/j.chemosphere.2019.04.199
M3 - Article
C2 - 31108441
AN - SCOPUS:85066075701
SN - 0045-6535
VL - 230
SP - 303
EP - 307
JO - Chemosphere
JF - Chemosphere
ER -