Experimental demonstration of an adaptive architecture for direct spectral imaging classification

Matthew Dunlop-Gray, Phillip K. Poon, Dathon Golish, Esteban Vera, Michael E. Gehm

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

9 Citas (Scopus)

Resumen

Spectral imaging is a powerful tool for providing in situ material classification across a spatial scene. Typically, spectral imaging analyses are interested in classification, though often the classification is performed only after reconstruction of the spectral datacube. We present a computational spectral imaging system, the Adaptive Feature-Specific Spectral Imaging Classifier (AFSSI-C), which yields direct classification across the spatial scene without reconstruction of the source datacube. With a dual disperser architecture and a programmable spatial light modulator, the AFSSI-C measures specific projections of the spectral datacube which are generated by an adaptive Bayesian classification and feature design framework. We experimentally demonstrate multiple order-of-magnitude improvement of classification accuracy in low signal-to-noise (SNR) environments when compared to legacy spectral imaging systems.

Idioma originalInglés
Páginas (desde-hasta)18307-18321
Número de páginas15
PublicaciónOptics Express
Volumen24
N.º16
DOI
EstadoPublicada - 8 ago. 2016
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Experimental demonstration of an adaptive architecture for direct spectral imaging classification'. En conjunto forman una huella única.

Citar esto