Fast adaptive nonuniformity correction for infrared focal-plane array detectors

Esteban Vera, Sergio Torres

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

71 Citas (Scopus)

Resumen

A novel adaptive scene-based nonuniformity correction technique is presented. The technique simultaneously estimates detector parameters and performs the nonuniformity correction based on the retina-like neural network approach. The proposed method includes the use of an adaptive learning rate rule in the gain and offset parameter estimation process. This learning rate rule, together with a reduction in the averaging window size used for the parameter estimation, may provide an efficient implementation that should increase the original method's scene-based ability to estimate the fixed-pattern noise. The performance of the proposed algorithm is then evaluated with infrared image sequences with simulated and real fixed-pattern noise. The results show a significative faster and more reliable fixed-pattern noise reduction, tracking the parameters drift, and presenting a good adaptability to scene changes and nonuniformity conditions.

Idioma originalInglés
Páginas (desde-hasta)1994-2004
Número de páginas11
PublicaciónEurasip Journal on Applied Signal Processing
Volumen2005
N.º13
DOI
EstadoPublicada - 1 ago. 2005
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Fast adaptive nonuniformity correction for infrared focal-plane array detectors'. En conjunto forman una huella única.

Citar esto