Fisher forecasts for primordial non-Gaussianity from persistent homology

Matteo Biagetti, Juan Calles, Lina Castiblanco, Alex Cole, Jorge Noreña

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)


We study the information content of summary statistics built from the multi-scale topology of large-scale structures on primordial non-Gaussianity of the local and equilateral type. We use halo catalogs generated from numerical N-body simulations of the Universe on large scales as a proxy for observed galaxies. Besides calculating the Fisher matrix for halos in real space, we also check more realistic scenarios in redshift space. Without needing to take a distant observer approximation, we place the observer on a corner of the box. We also add redshift errors mimicking spectroscopic and photometric samples. We perform several tests to assess the reliability of our Fisher matrix, including the Gaussianity of our summary statistics and convergence. We find that the marginalized 1-σ uncertainties in redshift space are Δf NLloc ∼ 16 and Δf NLequi ∼ 41 on a survey volume of 1 (Gpc/h)3. These constraints are weakly affected by redshift errors. We close by speculating as to how this approach can be made robust against small-scale uncertainties by exploiting (non)locality.

Idioma originalInglés
Número de artículo002
PublicaciónJournal of Cosmology and Astroparticle Physics
EstadoPublicada - 1 oct. 2022


Profundice en los temas de investigación de 'Fisher forecasts for primordial non-Gaussianity from persistent homology'. En conjunto forman una huella única.

Citar esto