Geometry-controlled phase transition in vibrated granular media

René Zuñiga, Germán Varas, Stéphane Job

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva


We report experiments on the dynamics of vibrated particles constrained in a two-dimensional vertical container, motivated by the following question: how to get the most out of a given external vibration to maximize internal disorder (e.g. to blend particles) and agitation (e.g. to absorb vibrations)? Granular media are analogs to classical thermodynamic systems, where the injection of energy can be achieved by shaking them: fluidization arises by tuning either the amplitude or the frequency of the oscillations. Alternatively, we explore what happens when another feature, the container geometry, is modified while keeping constant the energy injection. Our method consists in modifying the container base into a V-shape to break the symmetries of the inner particulate arrangement. The lattice contains a compact hexagonal solid-like crystalline phase coexisting with a loose amorphous fluid-like phase, at any thermal agitation. We show that both the solid-to-fluid volume fraction and the granular temperature depend not only on the external vibration but also on the number of topological defects triggered by the asymmetry of the container. The former relies on the statistics of the energy fluctuations and the latter is consistent with a two-dimensional melting transition described by the KTHNY theory.

Idioma originalInglés
Número de artículo14989
PublicaciónScientific Reports
EstadoPublicada - dic. 2022
Publicado de forma externa


Profundice en los temas de investigación de 'Geometry-controlled phase transition in vibrated granular media'. En conjunto forman una huella única.

Citar esto