TY - JOUR

T1 - Holographic energy density on Hořava-Lifshitz cosmology

AU - Lepe, Samuel

AU - Peña, Francisco

AU - Torres, Francisco

N1 - Publisher Copyright:
© 2015 American Physical Society.

PY - 2015/1/14

Y1 - 2015/1/14

N2 - In Hořava-Lifshitz cosmology we use the holographic Ricci-like cutoff for the energy density proposed by L.N. Granda and A. Oliveros and under this framework we study, through the cosmic evolution at late times, the sign change in the amount of nonconservation energy (Q) present in this cosmology. We revise the early stage (curvature-dependent) of this cosmology, where a term reminiscent of stiff matter is the dominant, and in this stage we find a power-law solution for the cosmic scale factor although ω=-1. Late and early phantom schemes are obtained without requiring ω<-1. Nevertheless, these schemes are not feasible according to what is shown in this paper. We also show that ω=-1 alone does not imply a de Sitter phase in the present cosmology. Thermal aspects are revised by considering the energy interchange between the bulk and the spacetime boundary and we conclude that there is no thermal equilibrium between them. Finally, a ghost scalar graviton (extra degree of freedom in HL gravity) is required by the observational data.

AB - In Hořava-Lifshitz cosmology we use the holographic Ricci-like cutoff for the energy density proposed by L.N. Granda and A. Oliveros and under this framework we study, through the cosmic evolution at late times, the sign change in the amount of nonconservation energy (Q) present in this cosmology. We revise the early stage (curvature-dependent) of this cosmology, where a term reminiscent of stiff matter is the dominant, and in this stage we find a power-law solution for the cosmic scale factor although ω=-1. Late and early phantom schemes are obtained without requiring ω<-1. Nevertheless, these schemes are not feasible according to what is shown in this paper. We also show that ω=-1 alone does not imply a de Sitter phase in the present cosmology. Thermal aspects are revised by considering the energy interchange between the bulk and the spacetime boundary and we conclude that there is no thermal equilibrium between them. Finally, a ghost scalar graviton (extra degree of freedom in HL gravity) is required by the observational data.

UR - http://www.scopus.com/inward/record.url?scp=84921535804&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.91.024023

DO - 10.1103/PhysRevD.91.024023

M3 - Article

AN - SCOPUS:84921535804

SN - 1550-7998

VL - 91

JO - Physical Review D - Particles, Fields, Gravitation and Cosmology

JF - Physical Review D - Particles, Fields, Gravitation and Cosmology

IS - 2

M1 - 024023

ER -