Hybridization of PSO and a discrete position update scheme techniques for manufacturing cell design

Orlando Duran, Nibaldo Rodriguez, Luiz Airton Consalter

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

5 Citas (Scopus)

Resumen

This paper proposes an hybrid algorithm for Manufacturing Cell Formation. The two techniques that are combined to address this problem correspond to Particle Swarm Optimization (PSO) and a Data Mining Clustering application. The criterion used to group the machines in cells is based on the minimization of inter-cell movements. A maximum cell size is imposed and the number of cell is parameterizable. Some published exact results have been used as benchmarks to assess the proposed algorithm. The computational results show that the proposed algorithm is able to find the optimal solutions on almost all instances with low variability and stability.

Idioma originalInglés
Título de la publicación alojadaMICAI 2008
Subtítulo de la publicación alojadaAdvances in Artificial Intelligence - 7th Mexican International Conference on Artificial Intelligence, Proceedings
Páginas503-512
Número de páginas10
DOI
EstadoPublicada - 2008
Publicado de forma externa
Evento7th Mexican International Conference on Artificial Intelligence, MICAI 2008 - Atizapan de Zaragoza, México
Duración: 27 oct. 200831 oct. 2008

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen5317 LNAI
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia7th Mexican International Conference on Artificial Intelligence, MICAI 2008
País/TerritorioMéxico
CiudadAtizapan de Zaragoza
Período27/10/0831/10/08

Huella

Profundice en los temas de investigación de 'Hybridization of PSO and a discrete position update scheme techniques for manufacturing cell design'. En conjunto forman una huella única.

Citar esto