Identification of continuous-time systems utilising Kautz basis functions from sampled-data

María Coronel, Rodrigo Carvajal, Juan C. Agüero

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

2 Citas (Scopus)

Resumen

In this paper we address the problem of identifying a continuous-time deterministic system utilising sampled-data with instantaneous sampling. We develop an identification algorithm based on Maximum Likelihood. The exact discrete-time model is obtained for two cases: i) known continuous-time model structure and ii) using Kautz basis functions to approximate the continuous-time transfer function. The contribution of this paper is threefold: i) we show that, in general, the discretisation of continuous-time deterministic systems leads to several local optima in the likelihood function, phenomenon termed as aliasing, ii) we discretise Kautz basis functions and obtain a recursive algorithm for constructing their equivalent discrete-time transfer functions, and iii) we show that the utilisation of Kautz basis functions to approximate the true continuous-time deterministic system results in convex log-likelihood functions. We illustrate the benefits of our proposal via numerical examples.

Idioma originalInglés
Páginas (desde-hasta)536-541
Número de páginas6
PublicaciónIFAC-PapersOnLine
Volumen53
N.º2
DOI
EstadoPublicada - 2020
Publicado de forma externa
Evento21st IFAC World Congress 2020 - Berlin, Alemania
Duración: 12 jul. 202017 jul. 2020

Huella

Profundice en los temas de investigación de 'Identification of continuous-time systems utilising Kautz basis functions from sampled-data'. En conjunto forman una huella única.

Citar esto