Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model

A. Veloz, R. Salas, H. Allende-Cid, H. Allende, C. Moraga

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

14 Citas (Scopus)


This work proposes a method to find the set of the most influential lags and the rule structure of a Takagi–Sugeno–Kang (TSK) fuzzy model for time series applications. The proposed method resembles the techniques that prioritize lags, evaluating the proximity of nearby samples in the input space using the closeness of the corresponding target values. Clusters of samples are generated, and the consistency of the mapping between the predicted variable and the set of candidate past values is evaluated. A TSK model is established, and possible redundancies in the rule base are avoided. The proposed method is evaluated using simulated and real data. Several simulation experiments were conducted for five synthetic nonlinear autoregressive processes, two nonlinear vector autoregressive processes and eight benchmark time series. The results show a competitive performance in the mean square error and a promising ability to find a proper set of lags for a given autoregressive process.

Idioma originalInglés
Páginas (desde-hasta)641-666
Número de páginas26
PublicaciónNeural Processing Letters
EstadoPublicada - 1 jun. 2016


Profundice en los temas de investigación de 'Identification of Lags in Nonlinear Autoregressive Time Series Using a Flexible Fuzzy Model'. En conjunto forman una huella única.

Citar esto