Image classifier for the TJ-II thomson scattering diagnostic: Evaluation with a feed forward neural network

G. Farias, R. Dormido, M. Santos, N. Duro

Producción científica: Contribución a una revistaArtículo de la conferenciarevisión exhaustiva

7 Citas (Scopus)

Resumen

There are two big stages to implement in a signal classification process: features extraction and signal classification. The present work shows up the development of an automated classifier based on the use of the Wavelet Transform to extract signal characteristics, and Neural Networks (Feed Forward type) to obtain decision rules. The classifier has been applied to the nuclear fusion environment (TJ-II stellarator), specifically to the Thomson Scattering diagnostic, which is devoted to measure density and temperature radial profiles. The aim of this work is to achieve an automated profile reconstruction from raw data without human intervention. Raw data processing depends on the image pattern obtained in the measurement and, therefore, an image classifier is required. The method reduces the 221.760 original features to only 900, being the success mean rate over 90%. This classifier has been programmed in MATLAB.

Idioma originalInglés
Páginas (desde-hasta)604-612
Número de páginas9
PublicaciónLecture Notes in Computer Science
Volumen3562
N.ºPART II
DOI
EstadoPublicada - 2005
Publicado de forma externa
EventoFirst International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005 - Las Palmas, Canary Islands, Espana
Duración: 15 jun. 200518 jun. 2005

Huella

Profundice en los temas de investigación de 'Image classifier for the TJ-II thomson scattering diagnostic: Evaluation with a feed forward neural network'. En conjunto forman una huella única.

Citar esto