Initial results with time series forecasting of TJ-II heliac waveforms

G. Farias, S. Dormido-Canto, J. Vega, N. Díaz

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva


This article discusses about how to apply forecasting techniques to predict future samples of plasma signals during a discharge. One application of the forecasting could be to detect in real time anomalous behaviors in fusion waveforms. The work describes the implementation of three prediction techniques; two of them based on machine learning methods such as artificial neural networks and support vector machines for regression. The results have shown that depending on the temporal horizon, the predictions match the real samples in most cases with an error less than 5%, even more the forecasting of five samples ahead can reach accuracy over 90% in most signals analyzed.

Idioma originalInglés
Páginas (desde-hasta)777-781
Número de páginas5
PublicaciónFusion Engineering and Design
EstadoPublicada - 1 oct. 2015
Publicado de forma externa


Profundice en los temas de investigación de 'Initial results with time series forecasting of TJ-II heliac waveforms'. En conjunto forman una huella única.

Citar esto