Iterative image restoration using nonstationary priors

Esteban Vera, Miguel Vega, Rafael Molina, Aggelos K. Katsaggelos

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

11 Citas (Scopus)

Resumen

In this paper, we propose an algorithm for image restoration based on fusing nonstationary edgepreserving priors. We develop a Bayesian modeling followed by an evidence approximation inference approach for deriving the analytic foundations of the proposed restoration method. Through a series of approximations, the final implementation of the proposed image restoration algorithm is iterative and takes advantage of the Fourier domain. Simulation results over a variety of blurred and noisy standard test images indicate that the presented method comfortably surpasses the current state-of-the-art image restoration for compactly supported degradations. We finally present experimental results by digitally refocusing images captured with controlled defocus, successfully confirming the ability of the proposed restoration algorithm in recovering extra features and rich details, while still preserving edges.

Idioma originalInglés
Páginas (desde-hasta)D102-D110
PublicaciónApplied Optics
Volumen52
N.º10
DOI
EstadoPublicada - 1 abr. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Iterative image restoration using nonstationary priors'. En conjunto forman una huella única.

Citar esto