Lime and Compost Promote Plant Re-Colonization of Metal-Polluted, Acidic Soils

Christopher Ulriksen, Rosanna Ginocchio, Michel Mench, Alexander Neaman

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

18 Citas (Scopus)


The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.

Idioma originalInglés
Páginas (desde-hasta)820-833
Número de páginas14
PublicaciónInternational Journal of Phytoremediation
EstadoPublicada - sep. 2012


Profundice en los temas de investigación de 'Lime and Compost Promote Plant Re-Colonization of Metal-Polluted, Acidic Soils'. En conjunto forman una huella única.

Citar esto