Lyapunov exponents for families of rotated linear cocycles

Pancho Valenzuela-Henríquez, Carlos H. Vásquez

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Consider a compact metric space X, a homeomorphism T: X → X and an ergodic T-invariant measure μ. In this work, we are interested in the study of the upper Lyapunov exponent λ+(θ) associated to the periodic family of cocycles defined by where is a linear cocycle orientation-preserving and Rθ is a rotation of angle θεℝ. We show that if the cocycle A has dominated splitting, then there exists a non empty open set of parameters θ such that the cocycle Aθ has dominated splitting and the function is real analytic and strictly concave. As a consequence, we obtain that the set of parameters θ where the cocycle Aθ does not have dominated splitting is non empty.

Idioma originalInglés
Páginas (desde-hasta)2423-2440
Número de páginas18
PublicaciónNonlinearity
Volumen28
N.º7
DOI
EstadoPublicada - 1 jul. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Lyapunov exponents for families of rotated linear cocycles'. En conjunto forman una huella única.

Citar esto