TY - JOUR
T1 - Machine learning techniques as an efficient alternative diagnostic tool for COVID-19 cases
AU - Bustos, Nicolás
AU - Tello, Manuel
AU - Droppelmann, Guillermo
AU - García, Nicolás
AU - Feijoo, Felipe
AU - Leiva, Víctor
N1 - Publisher Copyright:
© 2022 The Author(s). Published by MRE Press.
PY - 2022/1
Y1 - 2022/1
N2 - Background: The SARS-CoV-2 virus has demonstrated the weakness of many health systems worldwide, creating a saturation and lack of access to treatments. A bottleneck to fight this pandemic relates to the lack of diagnostic infrastructure for early detection of positive cases, particularly in rural and impoverished areas of developing countries. In this context, less costly and fast machine learning (ML) diagnosis-based systems are helpful. However, most of the research has focused on deep-learning techniques for diagnosis, which are computationally and technologically expensive. ML models have been mainly used as a benchmark and are not entirely explored in the existing literature on the topic of this paper. Objective: To analyze the capabilities of ML techniques (compared to deep learning) to diagnose COVID-19 cases based on X-ray images, assessing the performance of these techniques and using their predictive power for such a diagnosis. Methods: A factorial experiment was designed to establish this power with X-ray chest images of healthy, pneumonia, and COVID-19 infected patients. This design considers data-balancing methods, feature extraction approaches, different algorithms, and hyperparameter optimization. The ML techniques were evaluated based on classification metrics, including accuracy, the area under the receiver operating characteristic curve (AUROC), F1-score, sensitivity, and specificity. Results: The design of experiment provided the mean and its confidence intervals for the predictive capability of different ML techniques, which reached AUROC values as high as 90% with suitable sensitivity and specificity. Among the learning algorithms, support vector machines and random forest performed best. The down-sampling method for unbalanced data improved the predictive power significantly for the images used in this study. Conclusions: Our investigation demonstrated that ML techniques are able to identify COVID-19 infected patients. The results provided suitable values of sensitivity and specificity, minimizing the false-positive or false-negative rates. The models were trained with significantly low computational resources, which helps to provide access and deployment in rural and impoverished areas.
AB - Background: The SARS-CoV-2 virus has demonstrated the weakness of many health systems worldwide, creating a saturation and lack of access to treatments. A bottleneck to fight this pandemic relates to the lack of diagnostic infrastructure for early detection of positive cases, particularly in rural and impoverished areas of developing countries. In this context, less costly and fast machine learning (ML) diagnosis-based systems are helpful. However, most of the research has focused on deep-learning techniques for diagnosis, which are computationally and technologically expensive. ML models have been mainly used as a benchmark and are not entirely explored in the existing literature on the topic of this paper. Objective: To analyze the capabilities of ML techniques (compared to deep learning) to diagnose COVID-19 cases based on X-ray images, assessing the performance of these techniques and using their predictive power for such a diagnosis. Methods: A factorial experiment was designed to establish this power with X-ray chest images of healthy, pneumonia, and COVID-19 infected patients. This design considers data-balancing methods, feature extraction approaches, different algorithms, and hyperparameter optimization. The ML techniques were evaluated based on classification metrics, including accuracy, the area under the receiver operating characteristic curve (AUROC), F1-score, sensitivity, and specificity. Results: The design of experiment provided the mean and its confidence intervals for the predictive capability of different ML techniques, which reached AUROC values as high as 90% with suitable sensitivity and specificity. Among the learning algorithms, support vector machines and random forest performed best. The down-sampling method for unbalanced data improved the predictive power significantly for the images used in this study. Conclusions: Our investigation demonstrated that ML techniques are able to identify COVID-19 infected patients. The results provided suitable values of sensitivity and specificity, minimizing the false-positive or false-negative rates. The models were trained with significantly low computational resources, which helps to provide access and deployment in rural and impoverished areas.
KW - Artificial intelligence
KW - Deep learning
KW - PCR
KW - R software
KW - ROC curve
KW - SARS-CoV-2
KW - Xrays
UR - http://www.scopus.com/inward/record.url?scp=85124337176&partnerID=8YFLogxK
U2 - 10.22514/SV.2021.110
DO - 10.22514/SV.2021.110
M3 - Article
AN - SCOPUS:85124337176
SN - 1334-5605
VL - 18
SP - 23
EP - 33
JO - Signa Vitae
JF - Signa Vitae
IS - 1
ER -