Making sense of parameter estimation and model simulation in bioprocesses

M. Constanza Sadino-Riquelme, José Rivas, DAVID ALEJANDRO JEISON NUÑEZ, Robert E. Hayes, Andrés Donoso-Bravo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

Most articles that report fitted parameters for kinetic models do not include meaningful statistical information. This study demonstrates the importance of reporting a complete statistical analysis and shows a methodology to perform it, using functionalities implemented in computational tools. As an example, alginate production is studied in a batch stirred-tank fermenter and modeled using the kinetic model proposed by Klimek and Ollis (1980). The model parameters and their 95% confidence intervals are estimated by nonlinear regression. The significance of the parameters value is checked using a hypothesis test. The uncertainty of the parameters is propagated to the output model variables through prediction intervals, showing that the kinetic model of Klimek and Ollis (1980) can simulate with high certainty the dynamic of the alginate production process. Finally, the results obtained in other studies are compared to show how the lack of statistical analysis can hold back a deeper understanding about bioprocesses.

Idioma originalInglés
Páginas (desde-hasta)1357-1366
Número de páginas10
PublicaciónBiotechnology and Bioengineering
Volumen117
N.º5
DOI
EstadoPublicada - 1 may. 2020
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Making sense of parameter estimation and model simulation in bioprocesses'. En conjunto forman una huella única.

Citar esto