Sobre el modelo Gaussiano inverso mezclado t-student y una aplicación a producción de proteínas

Antonio Sanhueza, VICTOR ELISEO LEIVA SANCHEZ, Liliana López-Kleine

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)

Resumen

In this article, we introduce a mixture inverse Gaussian (MIG) model based on the Student-t distribution and apply it to bacterium-based protein production for food industry. This model is mainly useful to describe data that follow positively skewed distributions and accommodate atypical observations in a better way than its classical version. Specifically, we present a characterization of the MIG-t distribution. In addition, we carry out a hazard analysis of this distribution centered mainly on its hazard rate. Furthermore, we discuss the maximum likelihood method, which produces-in this case-robust parameter estimates. Moreover, to evaluate the potential influence of atypical observations, we produce a diagnostic analysis for the model. Finally, we apply the obtained results to novel bacterium-based protein production data and statistically compare two types of protein producers using the likelihood ratio test based on the MIG-t model as an alternative methodology to the procedures available until now. This fact is very important, since the evaluation of protein production using both constructions allows practitioners to choose the most productive one before the bacterial culture is scaled to an industrial level.

Título traducido de la contribuciónOn the student-t mixture inverse Gaussian model with an application to protein production
Idioma originalEspañol
Páginas (desde-hasta)177-195
Número de páginas19
PublicaciónRevista Colombiana de Estadistica
Volumen34
N.º1
EstadoPublicada - 1 jun 2011

Palabras clave

  • Distribution mixture
  • Distributions
  • Length-biased
  • Likelihood methods
  • R computer language

Huella

Profundice en los temas de investigación de 'Sobre el modelo Gaussiano inverso mezclado t-student y una aplicación a producción de proteínas'. En conjunto forman una huella única.

Citar esto