Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization

Broderick Crawford, Ricardo Soto, Eric Monfroy, Wenceslao Palma, Carlos Castro, Fernando Paredes

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

84 Citas (Scopus)

Resumen

A Constraint Satisfaction Problem is defined by a set of variables and a set of constraints, each variable has a nonempty domain of possible values. Each constraint involves some subset of the variables and specifies the allowable combinations of values for that subset. A solution of the problem is defined by an assignment of values to some or all of the variables that does not violate any constraints. To solve an instance, a search tree is created and each node in the tree represents a variable of the instance. The order in which the variables are selected for instantiation changes the form of the search tree and affects the cost of finding a solution. In this paper we explore the use of a Choice Function to dynamically select from a set of variable ordering heuristics the one that best matches the current problem state in order to show an acceptable performance over a wide range of instances. The Choice Function is defined as a weighted sum of process indicators expressing the recent improvement produced by the heuristic recently used. The weights are determined by a Particle Swarm Optimization algorithm in a multilevel approach. We report results where our combination of strategies outperforms the use of individual strategies.

Idioma originalInglés
Páginas (desde-hasta)1690-1695
Número de páginas6
PublicaciónExpert Systems with Applications
Volumen40
N.º5
DOI
EstadoPublicada - abr. 2013
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization'. En conjunto forman una huella única.

Citar esto