Partial hyperbolicity or dense elliptic periodic points for C 1-generic symplectic diffeomorphisms

Radu Saghin, Zhihong Xia

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

22 Citas (Scopus)

Resumen

We prove that if a symplectic diffeomorphism is not partially hyperbolic, then with an arbitrarily small C 1 perturbation we can create a totally elliptic periodic point inside any given open set. As a consequence, a C 1-generic symplectic diffeomorphism is either partially hyperbolic or it has dense elliptic periodic points. This extends the similar results of S. Newhouse in dimension 2 and M.-C. Arnaud in dimension 4. Another interesting consequence is that stably ergodic symplectic diffeomorphisms must be partially hyperbolic, a converse to Shub-Pugh's stable ergodicity conjecture for the symplectic case.

Idioma originalInglés
Páginas (desde-hasta)5119-5136
Número de páginas18
PublicaciónTransactions of the American Mathematical Society
Volumen358
N.º11
DOI
EstadoPublicada - nov. 2006
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Partial hyperbolicity or dense elliptic periodic points for C 1-generic symplectic diffeomorphisms'. En conjunto forman una huella única.

Citar esto