Q-learnheuristics: Towards data-driven balanced metaheuristics

Broderick Crawford, Ricardo Soto, José Lemus-Romani, Marcelo Becerra-Rozas, José M. Lanza-Gutiérrez, Nuria Caballé, Mauricio Castillo, Diego Tapia, Felipe Cisternas-Caneo, José García, Gino Astorga, Carlos Castro, José Miguel Rubio

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

7 Citas (Scopus)

Resumen

One of the central issues that must be resolved for a metaheuristic optimization process to work well is the dilemma of the balance between exploration and exploitation. The metaheuristics (MH) that achieved this balance can be called balanced MH, where a Q-Learning (QL) integration framework was proposed for the selection of metaheuristic operators conducive to this balance, particularly the selection of binarization schemes when a continuous metaheuristic solves binary combinatorial problems. In this work the use of this framework is extended to other recent metaheuristics, demonstrating that the integration of QL in the selection of operators improves the explorationexploitation balance. Specifically, the Whale Optimization Algorithm and the Sine-Cosine Algorithm are tested by solving the Set Covering Problem, showing statistical improvements in this balance and in the quality of the solutions.

Idioma originalInglés
Número de artículo1839
PublicaciónMathematics
Volumen9
N.º16
DOI
EstadoPublicada - 2 ago. 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Q-learnheuristics: Towards data-driven balanced metaheuristics'. En conjunto forman una huella única.

Citar esto