Rationality and holomorphy of Langlands–Shahidi L-functions over function fields

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

We prove that all Langlands–Shahidi automorphic L-functions over function fields are rational; after twists by highly ramified characters they become polynomials; and, if π is a globally generic cuspidal automorphic representation of a split classical group or a unitary group and τ is a cuspidal (unitary) automorphic representation of a general linear group, then L(s, π× τ) is holomorphic for R(s) > 1 and has at most a simple pole at s= 1. We also prove the holomorphy and non-vanishing of automorphic exterior square, symmetric square and Asai L-functions for R(s) > 1. Finally, we complete previous results on functoriality for the classical groups over function fields with applications to the Ramanujan Conjecture and Riemann Hypothesis.

Idioma originalInglés
Páginas (desde-hasta)711-739
Número de páginas29
PublicaciónMathematische Zeitschrift
Volumen291
N.º1-2
DOI
EstadoPublicada - 11 feb. 2019
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Rationality and holomorphy of Langlands–Shahidi L-functions over function fields'. En conjunto forman una huella única.

Citar esto