Recent advances in high-dimensional clustering for text data

Resultado de la investigación: Capítulo del libro/informe/acta de congresoCapítulorevisión exhaustiva

1 Cita (Scopus)

Resumen

Clustering has become an important tool for every data scientist as it allows to perform exploratory data analysis and summarize large amounts of data. Specifically for text data, clustering faces other challenges derived from the high-dimensional space into which the data is represented. Furthermore and in spite of the fact that important contributions have already been made, scalability presents an important challenge when the whole-data-in-memory approach is no longer valid for real scenarios where data is collected in massive volumes. This chapter reviews the recent contributions on high-dimensional text data clustering with particular emphasis on scalability issues and also on the impact of the curse of dimensionality over the distance-based clustering methods.

Idioma originalInglés
Título de la publicación alojadaStudies in Fuzziness and Soft Computing
EditorialSpringer Verlag
Páginas323-337
Número de páginas15
DOI
EstadoPublicada - 1 oct 2017

Serie de la publicación

NombreStudies in Fuzziness and Soft Computing
Volumen349
ISSN (versión impresa)1434-9922

Huella

Profundice en los temas de investigación de 'Recent advances in high-dimensional clustering for text data'. En conjunto forman una huella única.

Citar esto