Regression from distributed data sources using discrete neighborhood representations and modified stalked generalization models

Héctor Allende-Cid, Héctor Allende, R. Monge, Claudio Moraga

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

1 Cita (Scopus)

Resumen

In this work we present a Distributed Regression approach, which works in problems where distributed data sources may have different contexts. Different context is defined as the change of the underlying law of probability in the distributed sources. We present an approach which uses a discrete representation of the probability density functions (pdfs). We create neighborhoods of similar datasets, comparing their pdfs, and use this information to build an ensemble-based approach and to improve a second level model used in this proposal, that is based in stalked generalization. We compare the proposal with other state of the art models with 5 real data sets and obtain favorable results in the majority of the datasets.

Idioma originalInglés
Páginas (desde-hasta)249-258
Número de páginas10
PublicaciónStudies in Computational Intelligence
Volumen570
DOI
EstadoPublicada - 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Regression from distributed data sources using discrete neighborhood representations and modified stalked generalization models'. En conjunto forman una huella única.

Citar esto