TY - JOUR
T1 - Relativistic second-order initial conditions for simulations of large-scale structure
AU - Adamek, Julian
AU - Calles, Juan
AU - Montandon, Thomas
AU - Noreña, Jorge
AU - Stahl, Clément
N1 - Publisher Copyright:
© 2022 IOP Publishing Ltd and Sissa Medialab.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Relativistic corrections to the evolution of structure can be used to test general relativity on cosmological scales. They are also a well-known systematic contamination in the search for a primordial non-Gaussian signal. We present a numerical framework to generate RELativistic second-order Initial Conditions (RELIC) based on a generic (not necessarily separable) second-order kernel for the density perturbations. In order to keep the time complexity manageable we introduce a scale cut that separates long and short scales, and neglect the "short-short"coupling that will eventually be swamped by uncontrollable higher-order effects. To test our approach, we use the second-order Einstein-Boltzmann code SONG to provide the numerical second-order kernel in a ΛCDM model, and we demonstrate that the realisations generated by RELIC reproduce the bispectra well whenever at least one of the scales is a "long"mode. We then present a generic algorithm that takes a perturbed density field as an input and provides particle initial data that matches this input to arbitrary order in perturbations for a given particle-mesh scheme. We implement this algorithm in the relativistic N-body code gevolution to demonstrate how our framework can be used to set precise initial conditions for cosmological simulations of large-scale structure.
AB - Relativistic corrections to the evolution of structure can be used to test general relativity on cosmological scales. They are also a well-known systematic contamination in the search for a primordial non-Gaussian signal. We present a numerical framework to generate RELativistic second-order Initial Conditions (RELIC) based on a generic (not necessarily separable) second-order kernel for the density perturbations. In order to keep the time complexity manageable we introduce a scale cut that separates long and short scales, and neglect the "short-short"coupling that will eventually be swamped by uncontrollable higher-order effects. To test our approach, we use the second-order Einstein-Boltzmann code SONG to provide the numerical second-order kernel in a ΛCDM model, and we demonstrate that the realisations generated by RELIC reproduce the bispectra well whenever at least one of the scales is a "long"mode. We then present a generic algorithm that takes a perturbed density field as an input and provides particle initial data that matches this input to arbitrary order in perturbations for a given particle-mesh scheme. We implement this algorithm in the relativistic N-body code gevolution to demonstrate how our framework can be used to set precise initial conditions for cosmological simulations of large-scale structure.
KW - Cosmological perturbation theory in GR and beyond
KW - cosmological simulations
KW - non-gaussianity
UR - http://www.scopus.com/inward/record.url?scp=85128765037&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2022/04/001
DO - 10.1088/1475-7516/2022/04/001
M3 - Article
AN - SCOPUS:85128765037
VL - 2022
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
SN - 1475-7516
IS - 4
M1 - 001
ER -