Robust autoregressive modeling and its diagnostic analytics with a COVID-19 related application

Yonghui Liu, Jing Wang, Víctor Leiva, Alejandra Tapia, Wei Tan, Shuangzhe Liu

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

Autoregressive models in time series are useful in various areas. In this article, we propose a skew-t autoregressive model. We estimate its parameters using the expectation-maximization (EM) method and develop the influence methodology based on local perturbations for its validation. We obtain the normal curvatures for four perturbation strategies to identify influential observations, and then to assess their performance through Monte Carlo simulations. An example of financial data analysis is presented to study daily log-returns for Brent crude futures and investigate possible impact by the COVID-19 pandemic.

Idioma originalInglés
PublicaciónJournal of Applied Statistics
DOI
EstadoAceptada/en prensa - 2023

Huella

Profundice en los temas de investigación de 'Robust autoregressive modeling and its diagnostic analytics with a COVID-19 related application'. En conjunto forman una huella única.

Citar esto