Self-organization in the one-dimensional Landau–Lifshitz–Gilbert–Slonczewski equation with non-uniform anisotropy fields

Mónica A. García-Ñustes, Fernando R. Humire, Alejandro O. Leon

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

3 Citas (Scopus)

Resumen

In magnetic films driven by spin-polarized currents, the perpendicular-to-plane anisotropy is equivalent to breaking the time translation symmetry, i.e., to a parametric pumping. In this work, we numerically study those current-driven magnets via the Landau–Lifshitz–Gilbert–Slonczewski equation in one spatial dimension. We consider a space-dependent anisotropy field in the parametric-like regime. The anisotropy profile is antisymmetric to the middle point of the system. We find several dissipative states and dynamical behavior and focus on localized patterns that undergo oscillatory and phase instabilities. Using numerical simulations, we characterize the localized states’ bifurcations and present the corresponding diagram of phases.

Idioma originalInglés
Número de artículo105674
PublicaciónCommunications in Nonlinear Science and Numerical Simulation
Volumen96
DOI
EstadoPublicada - may. 2021

Huella

Profundice en los temas de investigación de 'Self-organization in the one-dimensional Landau–Lifshitz–Gilbert–Slonczewski equation with non-uniform anisotropy fields'. En conjunto forman una huella única.

Citar esto