Statistical Inference on a Stochastic Epidemic Model

Raúl Fierro, Víctor Leiva, N. Balakrishnan

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

8 Citas (Scopus)

Resumen

In this work, we develop statistical inference for the parameters of a discrete-time stochastic SIR epidemic model. We use a Markov chain for describing the dynamic behavior of the epidemic. Specifically, we propose estimators for the contact and removal rates based on the maximum likelihood and martingale methods, and establish their asymptotic distributions. The obtained results are applied in the statistical analysis of the basic reproduction number, a quantity that is useful in establishing vaccination policies. In order to evaluate the population size for which the results are useful, a numerical study is carried out. Finally, a comparison of the maximum likelihood and martingale estimators is conducted by means of Monte Carlo simulations.

Idioma originalInglés
Páginas (desde-hasta)2297-2314
Número de páginas18
PublicaciónCommunications in Statistics: Simulation and Computation
Volumen44
N.º9
DOI
EstadoPublicada - 21 oct. 2015
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Statistical Inference on a Stochastic Epidemic Model'. En conjunto forman una huella única.

Citar esto