Statistical stability of mostly expanding diffeomorphisms

Martin Andersson, Carlos H. Vásquez

Producción científica: Contribución a una revistaArtículorevisión exhaustiva

6 Citas (Scopus)


We study how physical measures vary with the underlying dynamics in the open class of Cr, r>1, strong partially hyperbolic diffeomorphisms for which the central Lyapunov exponents of every Gibbs u-state is positive. If transitive, such a diffeomorphism has a unique physical measure that persists and varies continuously with the dynamics. A main ingredient in the proof is a new Pliss-like Lemma which, under the right circumstances, yields frequency of hyperbolic times close to one. Another novelty is the introduction of a new characterization of Gibbs cu-states. Both of these may be of independent interest. The non-transitive case is also treated: here the number of physical measures varies upper semi-continuously with the diffeomorphism, and physical measures vary continuously whenever possible.

Idioma originalInglés
Páginas (desde-hasta)1245-1270
Número de páginas26
PublicaciónAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
EstadoPublicada - 1 nov. 2020


Profundice en los temas de investigación de 'Statistical stability of mostly expanding diffeomorphisms'. En conjunto forman una huella única.

Citar esto