Thermal Face Generation using StyleGAN

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva


This article proposes the use of generative adversarial networks (GANs) via StyleGAN2 to create high-quality synthetic thermal images and obtain training data to build thermal face recognition models using deep learning.We employed different variants of StyleGAN2, incorporating the new improved version of StyleGAN that uses adaptive discriminator augmentation (ADA). In addition, three different thermal databases from the literature were employed to train a thermal face detector based on YOLOv3 and to train StyleGAN2 and its variants, evaluating different metrics. The synthetic thermal database was built using GANSpace to manipulate the intermediate latent space w of StyleGAN2 and obtain images with different characteristics, such as eyeglasses, rotation, beards, etc. We carried out the training of 6 pretrained deep learning models for face recognition to validate the use of our synthetic thermal database, obtaining 99.98% accuracy for classifying synthetic thermal face images.

Idioma originalInglés
PublicaciónIEEE Access
EstadoAceptada/en prensa - 2021
Publicado de forma externa


Profundice en los temas de investigación de 'Thermal Face Generation using StyleGAN'. En conjunto forman una huella única.

Citar esto