Thermal face recognition over time using sparse representation approach

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva


Thermal Face Recognition over time is a difficult challenge due to faces varies with different factor such as metabolism or ambient conditions. Thus, the aim of this work is to improve recognition rates of thermal faces acquired in time lapse mode, since the results available in other articles are not entirely satisfactory in this modality, which is mainly due to the large variation in the thermal characteristics of the faces in time lapses. To improve the recognition rates the approach called "Sparse Representation" was chosen. This method represents an input image as a linear combination of a dictionary composed of images of different subjects and a vector of sparse coefficients. The results are obtained using the two sets of UCHThermalFace database. The method shows high performance in the time lapse for thermal images.

Idioma originalInglés
Título de la publicación alojadaIET Seminar Digest
EditorialInstitution of Engineering and Technology
ISBN (versión impresa)9781785610813
EstadoPublicada - 2014
Evento6th Chilean Conference on Pattern Recognition, CCPR 2014 - Talca, Chile
Duración: 10 nov. 201414 nov. 2014

Serie de la publicación

NombreIET Seminar Digest


Conferencia6th Chilean Conference on Pattern Recognition, CCPR 2014


Profundice en los temas de investigación de 'Thermal face recognition over time using sparse representation approach'. En conjunto forman una huella única.

Citar esto