Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications

Javier Valdes, Yunesky Masip Macia, Wolfgang Dorner, Luis Ramirez Camargo

Resultado de la investigación: Contribución a una revistaArtículorevisión exhaustiva

4 Citas (Scopus)

Resumen

Demand side management is a promising alternative to offer flexibility to power systems with high shares of variable renewable energy sources. Numerous industries possess large demand side management potentials but accounting for them in energy system analysis and modelling is restricted by the availability of their demand data, which are usually confidential. In this study, a methodology to synthetize anonymized hourly electricity consumption profiles for industries and to calculate their flexibility potential is proposed. This combines different partitioning and hierarchical clustering analysis techniques with regression analysis. The methodology is applied to three case studies in Chile: two pulp and paper industry plants and one food industry plant. A significant hourly, daily and annual flexibility potential is found for the three cases (15%–75%). Moreover, the resulting demand profiles share the same statistical characteristics as the measured profiles but can be used in modelling exercises without confidentiality issues.

Idioma originalInglés
Número de artículo118962
PublicaciónEnergy
Volumen215
DOI
EstadoPublicada - 15 ene 2021
Publicado de forma externa

Huella

Profundice en los temas de investigación de 'Unsupervised grouping of industrial electricity demand profiles: Synthetic profiles for demand-side management applications'. En conjunto forman una huella única.

Citar esto