Using autonomous search for generating good enumeration strategy blends in constraint programming

Ricardo Soto, Broderick Crawford, Eric Monfroy, Víctor Bustos

Resultado de la investigación: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

33 Citas (Scopus)

Resumen

In Constraint Programming, enumeration strategies play an important role, they can significantly impact the performance of the solving process. However, choosing the right strategy is not simple as its behavior is commonly unpredictable. Autonomous search aims at tackling this concern, it proposes to replace bad performing strategies by more promising ones during the resolution. This process yields a combination of enumeration strategies that worked during the search phase. In this paper, we focus on the study of this combination by carefully tracking the resolution. Our preliminary goal is to find good enumeration strategy blends for a given Constraint Satisfaction Problem.

Idioma originalInglés
Título de la publicación alojadaComputational Science and Its Applications - 12th International Conference, ICCSA 2012, Proceedings
Páginas607-617
Número de páginas11
EdiciónPART 3
DOI
EstadoPublicada - 2012
Publicado de forma externa
Evento12th International Conference on Computational Science and Its Applications, ICCSA 2012 - Salvador de Bahia, Brasil
Duración: 18 jun 201221 jun 2012

Serie de la publicación

NombreLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NúmeroPART 3
Volumen7335 LNCS
ISSN (versión impresa)0302-9743
ISSN (versión digital)1611-3349

Conferencia

Conferencia12th International Conference on Computational Science and Its Applications, ICCSA 2012
País/TerritorioBrasil
CiudadSalvador de Bahia
Período18/06/1221/06/12

Huella

Profundice en los temas de investigación de 'Using autonomous search for generating good enumeration strategy blends in constraint programming'. En conjunto forman una huella única.

Citar esto